Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667189

RESUMEN

L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in Escherichia coli through in vivo biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS). The amperometric detection of L-lactate was performed at -0.100 V, with a linear range between 100 and 700 µM, a detection limit of 33 µM, and a quantification limit of 100 µM. The proposed biosensor (GCE/MWCNT-Av/bLOx) showed a reproducibility of 6.0% and it was successfully used for determining L-lactate in food and enriched serum samples.


Asunto(s)
Avidina , Técnicas Biosensibles , Ácido Láctico , Oxigenasas de Función Mixta , Nanotubos de Carbono , Nanotubos de Carbono/química , Oxigenasas de Función Mixta/química , Avidina/química , Técnicas Electroquímicas , Resonancia por Plasmón de Superficie , Enzimas Inmovilizadas/química , Escherichia coli , Biotinilación , Electrodos , Espectroscopía Dieléctrica , Límite de Detección
2.
Eur J Neurosci ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480476

RESUMEN

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1 -R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1 -R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1 -R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1 -R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1 -R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1 -R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1 -R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1 -R blockade altered the performance of social interaction. Our results highlight the AT1 -R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1 -R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1 -R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.

3.
Talanta ; 270: 125520, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147722

RESUMEN

We report a nanohybrid material obtained by non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with the new ligand (((1E,1'E)-(naphthalene-2,3-diylbis(azaneylylidene))bis(methaneylylidenedene)) bis(4-hydroxy-3,1-phenylene))diboronic acid (SB-dBA), rationally designed to mimic some recognition properties of biomolecules like concanavalin A, for the development of electrochemical biosensors based on the use of glycobiomolecules as biorecognition element. We present, as a proof-of-concept, a hydrogen peroxide biosensor obtained by anchoring horseradish peroxidase (HRP) at a glassy carbon electrode (GCE) modified with the nanohybrid prepared by sonication of 2.0 mg mL-1 MWCNTs and 0.50 mg mL-1 SB-dBA in N,N-dimethyl formamide (DMF) for 30 min. The hydrogen peroxide biosensing was performed at -0.050 V in the presence of 5.0 × 10-4 M hydroquinone. The analytical characteristics of the resulting biosensor are the following: linear range between 0.175 µM and 6.12 µM, detection limit of 58 nM, and reproducibility of 2.0 % using the same nanohybrid (6 biosensors), and 9.0 % using three different nanohybrids. The sensor was successfully used to quantify hydrogen peroxide in enriched milk and human blood serum samples and in a commercial disinfector.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Ácidos Borónicos , Peróxido de Hidrógeno/química , Bases de Schiff , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/química , Electrodos , Técnicas Electroquímicas
4.
Plants (Basel) ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299094

RESUMEN

In its natural distribution, Araucaria araucana is a plant species usually exposed to extreme environmental constraints such as wind, volcanism, fires, and low rainfall. This plant is subjected to long periods of drought, accentuated by the current climate emergency, causing plant death, especially in its early growth stages. Understanding the benefits that both arbuscular mycorrhizal fungi (AMF) and endophytic fungi (EF) could provide plants under different water regimes would generate inputs to address the above-mentioned issues. Here, the effect of AMF and EF inoculation (individually and combined) on the morphophysiological variables of A. araucana seedlings subjected to different water regimes was evaluated. Both the AMF and EF inocula were obtained from A. araucana roots growing in natural conditions. The inoculated seedlings were kept for 5 months under standard greenhouse conditions and subsequently subjected to three different irrigation levels for 2 months: 100, 75, and 25% of field capacity (FC). Morphophysiological variables were evaluated over time. Applying AMF and EF + AMF yielded a noticeable survival rate in the most extreme drought conditions (25% FC). Moreover, both the AMF and the EF + AMF treatments promoted an increase in height growth between 6.1 and 16.1%, in the production of aerial biomass between 54.3 and 62.6%, and in root biomass between 42.5 and 65.4%. These treatments also kept the maximum quantum efficiency of PSII (Fv/Fm 0.71 for AMF and 0.64 for EF + AMF) stable, as well as high foliar water content (>60%) and stable CO2 assimilation under drought stress. In addition, the EF + AMF treatment at 25% FC increased the total chlorophyll content. In conclusion, using indigenous strains of AMF, alone or in combination with EF, is a beneficial strategy to produce A. araucana seedlings with an enhanced ability to tolerate prolonged drought periods, which could be of great relevance for the survival of these native species under the current climate change.

5.
J Pharm Biomed Anal ; 232: 115370, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37163830

RESUMEN

The COVID-19 pandemic had devastating effects throughout the world, producing a severe crisis in the health systems and in the economy of a long list of countries, even developed ones. Therefore, highly sensitive and selective analytical bioplatforms that allow the descentralized and fast detection of the severe acute respiratory síndrome coronavirus 2 (SARS-CoV-2), are extremely necessary. Since 2020, several reviews have been published, most of them focused on the different strategies to detect the SARS-CoV-2, either from RNA, viral proteins or host antibodies produced due to the presence of the virus. In this review, the most relevant biosensors for the detection of SARS-CoV-2 RNA are particularly addressed, with special emphasis on the discussion of the biorecognition layers and the different schemes for transducing the hybridization event.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , ARN Viral/genética , Pandemias
6.
Micromachines (Basel) ; 14(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241682

RESUMEN

Nowadays, there is no doubt about the high electrocatalytic efficiency that is obtained when using hybrid materials between carbonaceous nanomaterials and transition metal oxides. However, the method to prepare them may involve differences in the observed analytical responses, making it necessary to evaluate them for each new material. The goal of this work was to obtain for the first time Co2SnO4 (CSO)/RGO nanohybrids via in situ and ex situ methods and to evaluate their performance in the amperometric detection of hydrogen peroxide. The electroanalytical response was evaluated in NaOH pH 12 solution using detection potentials of -0.400 V or 0.300 V for the reduction or oxidation of H2O2. The results show that for CSO there were no differences between the nanohybrids either by oxidation or by reduction, unlike what we previously observed with cobalt titanate hybrids, in which the in situ nanohybrid clearly had the best performance. On the other hand, no influence in the study of interferents and more stable signals were obtained when the reduction mode was used. In conclusion, for detecting hydrogen peroxide, any of the nanohybrids studied, i.e., in situ or ex situ, are suitable to be used, and more efficiency is obtained using the reduction mode.

7.
PLoS Negl Trop Dis ; 17(4): e0010862, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37043542

RESUMEN

Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Phlebotomus , Psychodidae , Animales , Humanos , Phlebotomus/parasitología , Psychodidae/parasitología , Leishmania/genética , Genómica
8.
Mikrochim Acta ; 190(2): 73, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695940

RESUMEN

An innovative strategy is proposed to simultaneously exfoliate multi-walled carbon nanotubes (MWCNTs) and generate MWCNTs with immunoaffinity properties. This strategy was based on the non-covalent functionalization of MWCNTs with human immunoglobulin G (IgG) by sonicating 2.5 mg mL-1 MWCNTs in 2.0 mg mL-1 IgG for 15 min with sonicator bath. Impedimetric experiments performed at glassy carbon electrodes (GCE) modified with the resulting MWCNT-IgG nanohybrid in the presence of anti-human immunoglobulin G antibody (Anti-IgG) demonstrated that the immunoglobulin retains their biorecognition properties even after the treatment during the MWCNT functionalization. We proposed, as proof-of-concept, two model electrochemical sensors, a voltammetric one for uric acid quantification by taking advantages of the exfoliated MWCNTs electroactivity (linear range, 5.0 × 10-7 M - 5.0 × 10-6 M; detection limit, 165 nM) and an impedimetric immunosensor for the detection of Anti-IgG through the use of the bioaffinity properties of the IgG present in the nanohybrid (linear range, 5-50 µg mL-1; detection limit, 2 µg mL-1).


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Humanos , Técnicas Biosensibles/métodos , Nanotubos de Carbono/química , Inmunoensayo , Inmunoglobulina G , Electrodos
9.
Micromachines (Basel) ; 13(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36422406

RESUMEN

We report the advantages of glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with polyarginine (PolyArg) for the adsorption and electrooxidation of different DNAs and the analytical applications of the resulting platform. The presence of the carbon nanostructures, and mainly the charge of the PolyArg that supports them, facilitates the adsorption of calf-thymus and salmon sperm double-stranded DNAs and produces an important decrease in the overvoltages for the oxidation of guanine and adenine residues and a significant enhancement in the associated currents. As a proof-of-concept of possible GCE/MWCNTs-PolyArg biosensing applications, we develop an impedimetric genosensor for the quantification of microRNA-21 at femtomolar levels, using GCE/MWCNTs-PolyArg as a platform for immobilizing the DNA probe, with a detection limit of 3fM, a sensitivity of 1.544 × 103 Ω M-1, and a successful application in enriched biological fluids.

10.
Biosens Bioelectron X ; 12: 100222, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36118917

RESUMEN

We report two novel genosensors for the quantification of SARS-CoV-2 nucleic acid using glassy carbon electrodes modified with a biocapture nanoplatform made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with avidin (Av) as a support of the biotinylated-DNA probes. One of the genosensors was based on impedimetric transduction offering a non-labelled and non-amplified detection of SARS-CoV-2 nucleic acid through the increment of [Fe(CN)6]3-/4- charge transfer resistance. This biosensor presented an excellent analytical performance, with a linear range of 1.0 × 10-18 M - 1.0 × 10-11 M, a sensitivity of (5.8 ± 0.6) x 102 Ω M-1 (r2 = 0.994), detection and quantification limits of 0.33 aM and 1.0 aM, respectively; and reproducibilities of 5.4% for 1.0 × 10-15 M target using the same MWCNTs-Av-bDNAp nanoplatform, and 6.9% for 1.0 × 10-15 M target using 3 different nanoplatforms. The other genosensor was based on a sandwich hybridization scheme and amperometric transduction using the streptavidin(Strep)-biotinylated horseradish peroxidase (bHRP)/hydrogen peroxide/hydroquinone (HQ) system. This genosensor allowed an extremely sensitive quantification of the SARS-CoV-2 nucleic acid, with a linear range of 1.0 × 10-20 M - 1.0 × 10-17 M, detection limit at zM level, and a reproducibility of 11% for genosensors prepared with the same MWCNTs-Av-bDNAp1 nanoplatform. As a proof-of-concept, and considering the extremely high sensitivity, the genosensor was challenged with highly diluted samples obtained from SARS-CoV-2 RNA PCR amplification.

11.
ScientificWorldJournal ; 2022: 4505349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837366

RESUMEN

Solar energy found abundantly in nature is considered a renewable energy source. It is also of great interest as an option for energy generation and CO2 emissions reduction. Several technologies of solar concentrating systems, known internationally as CSP (concentrated solar power), are found in the industrial and scientific environment. One of the most mature and internationally known technologies is the parabolic trough solar collector (PTSC), which has several applications, such as electricity generation, desalination, steam generation, and refrigeration systems, among others. However, more research and development (R&D) has been done to improve its performance, using new materials, absorber tube geometries, solar tracking systems, and work (thermal oils, nanofluids). Thus, the present work describes the development of a low-cost PTSC for academic and research purposes. The PTSC was built with an edge angle of 120°, an opening area of 2.2 m2, and a copper absorber tube of 42 mm in outer diameter without a glass envelope. The gutter structure is composed of wooden sheets cut in a parabolic shape, where a 1.2 mm-thick galvanized steel sheet coated with a reflective film is supported, thus functioning as the reflective surface of the PTSC. The solar tracking system is one of the active types with two axes containing photoresistive sensors, which are used to determine the solar position and electric actuators to correct the positioning of the gutter. The monitoring system was developed through an interactive panel to visualize the operating parameters of the sensing elements, thermocouples that measure the inlet and outlet temperature in the absorber tube, and the flow sensor to measure the flow of the heat transport fluid. Laboratory tests were performed with deionized water as a transport fluid, establishing two testing conditions. The first test condition analyzed the efficiency of the collector at different temperatures. Thus, the inlet temperature varied, between 30 and 70°C, presenting a flow of 0.020 kg/s. The second one evaluated the collector efficiency for different flows, subjecting the collector to flows from 0.002 to 0.030 kg/s. Thus, the proposed collector obtained an efficiency as a function of the temperature represented by the expression η = 0.324-2.47443 c', where c' is a parameter that relates the inlet temperature to the ambient temperature as a function of the solar radiation available. Yet, the efficiency in function of the flow became optimal when the flow regime became turbulent. It was concluded that the proposed solar collector obtained lower efficiency when compared with other collectors in the literature, which was assumed to be due to the diffusion losses of the parabolic trough reflector and thermal losses by convection in the parabolic trough absorber tube (optical efficiency, removal factor, and heat loss coefficient).

12.
Analyst ; 147(10): 2130-2140, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35421882

RESUMEN

This work presents for the first time the systematic preparation of a novel carbon nanotube-MCM-41 hybrid employing the mesoporous material MCM-41 as a successful dispersant for multiwall carbon nanotubes (MWCNTs). Relevant dispersion variables such as the amount of MWCNTs, MCM-41 concentration, and sonication time were optimized through a central composite design (CDD)/response surface methodology (RSM). Several solvents were evaluated and N,N-dimethylformamide (DMF) was selected because it allowed reaching stable dispersions with very good electrochemical response. The electrochemical performance of glassy carbon electrodes (GCE) modified with different hybrids was evaluated by cyclic voltammetry (CV) using ascorbic acid (AA) as redox marker, while their surface morphology was characterized by SEM microscopy. The optimal MWCNT-MCM-41 dispersion condition was 0.75 mg mL-1 MWCNTs, 0.25 mg mL-1 MCM-41, and 30 min sonication. Both, electrochemical results and SEM images correlate with a percolation behavior from MWCNT-MCM-41 hybrid. Electrooxidation of AA at GCE modified with the optimal hybrid occurred under diffusion control and exhibited an enhanced current response (65 µA) and a lower overvoltage (-0.005 V) compared to bare GCE (ip = 22 µA, Ep = 0.255 V). The amperometric response of AA at GCE/MWCNT-MCM-41 exhibited remarkable figures of merit, including an ultralow detection limit (1.5 nM), high sensitivity (45.4 × 103 µA M-1), excellent short- and long-term stability, and very good anti-interference ability for AA detection. The analytical applicability of the developed electrochemical sensor was evaluated by sensing AA in several real samples, showing excellent correlation with the values reported by manufacturers in both pharmaceutical and food samples.


Asunto(s)
Nanotubos de Carbono , Ácido Ascórbico/química , Técnicas Electroquímicas/métodos , Electrodos , Nanotubos de Carbono/química , Dióxido de Silicio
13.
Curr Biol ; 31(19): 4207-4218.e4, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331859

RESUMEN

The Drosophila circadian clock is driven by a transcriptional feedback loop in which CLOCK-CYCLE (CLK-CYC) binds E-boxes to transcribe genes encoding the PERIOD-TIMELESS (PER-TIM) repressor, which releases CLK-CYC from E-boxes to inhibit transcription. CLOCKWORK ORANGE (CWO) reinforces PER-TIM repression by binding E-boxes to maintain PER-TIM bound CLK-CYC off DNA, but also promotes CLK-CYC transcription through an unknown mechanism. To determine how CWO activates CLK-CYC transcription, we identified CWO target genes that are upregulated in the absence of CWO repression, conserved in mammals, and preferentially expressed in brain pacemaker neurons. Among the genes identified was a putative ortholog of mouse Clock Interacting Protein Circadian (Cipc), which represses CLOCK-BMAL1 transcription. Reducing or eliminating Drosophila Cipc expression shortens period, while overexpressing Cipc lengthens period, which is consistent with previous work showing that Drosophila Cipc represses CLK-CYC transcription in S2 cells. Cipc represses CLK-CYC transcription in vivo, but not uniformly, as per is strongly repressed, tim less so, and vri hardly at all. Long period rhythms in cwo mutant flies are largely rescued when Cipc expression is reduced or eliminated, indicating that increased Cipc expression mediates the period lengthening of cwo mutants. Consistent with this behavioral rescue, eliminating Cipc rescues the decreased CLK-CYC transcription in cwo mutant flies, where per is strongly rescued, tim is moderately rescued, and vri shows little rescue. These results suggest a mechanism for CWO-dependent CLK-CYC activation: CWO inhibition of CIPC repression promotes CLK-CYC transcription. This mechanism may be conserved since cwo and Cipc perform analogous roles in the mammalian circadian clock.


Asunto(s)
Proteínas de Drosophila , Drosophila , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Clorprofam/metabolismo , Ritmo Circadiano/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Mamíferos/genética , Ratones , Transcripción Genética
14.
iScience ; 24(1): 101893, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33364582

RESUMEN

The vrille (vri) gene encodes a transcriptional repressor required for Drosophila development as well as circadian behavior in adults. Alternate first exons produce vri transcripts predicted to produce a short VRI isoform during development and long VRI in adults. A vri mutant (vri Δ679) lacking long VRI transcripts is viable, confirming that short VRI is sufficient for developmental functions, yet behavioral rhythms in vri Δ679 flies persist, showing that short VRI is sufficient for clock output. E-box regulatory elements that drive rhythmic long VRI transcript expression are required for developmental expression of short VRI transcripts. Surprisingly, long VRI transcripts primarily produce short VRI in adults, apparently due to a poor Kozak sequence context, demonstrating that short VRI drives circadian behavior. Thus, E-box-driven long VRI transcripts primarily control circadian rhythms via short VRI, whereas the same E-boxes drive short VRI transcripts that control developmental functions using short VRI.

15.
Sci Rep ; 10(1): 17951, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087840

RESUMEN

Circadian clocks keep time via ~ 24 h transcriptional feedback loops. In Drosophila, CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors are feedback loop components whose transcriptional status varies over a circadian cycle. Although changes in the state of activators and repressors has been characterized, how their status is translated to transcriptional activity is not understood. We used mass spectrometry to identify proteins that interact with GFP-tagged CLK (GFP-CLK) in fly heads at different times of day. Many expected and novel interacting proteins were detected, of which several interacted rhythmically and were potential regulators of protein levels, activity or transcriptional output. Genes encoding these proteins were tested to determine if they altered circadian behavior via RNAi knockdown in clock cells. The NIPPED-A protein, a scaffold for the SAGA and Tip60 histone modifying complexes, interacts with GFP-CLK as transcription is activated, and reducing Nipped-A expression lengthens circadian period. RNAi analysis of other SAGA complex components shows that the SAGA histone deubiquitination (DUB) module lengthened period similarly to Nipped-A RNAi knockdown and weakened rhythmicity, whereas reducing Tip60 HAT expression drastically weakened rhythmicity. These results suggest that CLK-CYC binds NIPPED-A early in the day to promote transcription through SAGA DUB and Tip60 HAT activity.


Asunto(s)
Proteínas CLOCK/fisiología , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas de Drosophila/fisiología , Drosophila/genética , Drosophila/fisiología , Histona Acetiltransferasas/fisiología , Proteómica , Factores de Transcripción/fisiología , Animales , Proteínas de Drosophila/genética , Expresión Génica , Histona Acetiltransferasas/genética , Unión Proteica , Interferencia de ARN , Factores de Transcripción/genética , Transcripción Genética
16.
J Pharm Biomed Anal ; 191: 113526, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32892085

RESUMEN

We are reporting a new strategy for preparing carbon nanotubes (CNTs)-based hydrogen peroxide and glucose amperometric sensors by taking advantage of the dual role of bathocuproine disulfonic acid (BCS) as dispersing agent of multi-walled carbon nanotubes (MWCNTs) and as ligand for the preconcentration of Cu(II). The platform was obtained by casting glassy carbon electrodes (GCE) with the dispersion of MWCNTs in BCS (MWCNTs-BCS) followed by the preconcentration of Cu(II) by surface complex formation at open circuit potential (GCE/MWCNTs-BCS/Cu). The resulting electrode was used for the sensitive amperometric quantification of hydrogen peroxide at 0.400 V catalyzed by the preconcentrated copper, with a linear range between 5.0 × 10-7 and 7.4 × 10-6 M, a sensitivity of 24.3 mA.M-1, and a detection limit of 0.2 µM. The adsorption of GOx at GCE/MWCNTs-BCS/Cu followed by the immobilization of Nafion (Naf), allowed the construction of a sensitive and selective amperometric glucose biosensor with a linear range between 5.0 × 10-6 M and 4.9 × 10-4 M, a sensitivity of (477 ± 3) µA.M-1 and a detection limit of 2 µM. The proposed (bio)sensors were successfully used for the quantification of hydrogen peroxide in enriched milk samples and glucose in milk and commercial beverages without any pretreatment.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Cobre , Técnicas Electroquímicas , Electrodos , Glucosa , Peróxido de Hidrógeno , Ligandos , Fenantrolinas
17.
J Pharm Biomed Anal ; 189: 113478, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32768875

RESUMEN

MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities. Electrochemical biosensors, mainly those based on nanomaterials, have emerged as a promising alternative to the conventional miRNA detection methods and have paved the way to the development of sensitive, fast, and low-cost detection systems. This review is focused on the most relevant contributions performed in the field of electrochemical miRNAs biosensors between 2017 and the beginning of 2020. The main contribution of this article is the critical discussion of the different amplification strategies and the comparative analysis between amplified and non-amplified miRNA electrochemical biosensing and between the different amplification schemes. Particular emphasis was given to the importance of the nanostructures, enzymes, labelling molecules, and special sequences of nucleic acids or analogues on the organization of the different bioanalytical platforms, the transduction of the hybridization event and the generation the analytical signal.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nanoestructuras , Técnicas Electroquímicas , MicroARNs/genética , Hibridación de Ácido Nucleico
18.
Anal Bioanal Chem ; 412(15): 3539-3546, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32239259

RESUMEN

This work is focused on the development of a genosensor for microRNA-21 quantification using surface plasmon resonance (SPR) to transduce the hybridization event. The biosensing platform was built by self-assembling two bilayers of poly(diallyldimethylammonium chloride) (PDDA) and graphene oxide (GO) at a gold surface modified with 3-mercaptopropane sulfonate (MPS), followed by the covalent attachment of the DNA probe. GO was used in two directions, to allow the anchoring of the probe DNA and to increase the sensitivity of the biosensing event due to its field enhancer effect. The new bioanalytical platform represents an interesting alternative for the label-free biosensing of microRNA-21, with a linear range between 1.0 fM and 10 nM, a sensitivity of 5.1 ± 0.1 moM-1 and a detection limit of 0.3fM. The proposed sensing strategy was successfully used for the quantification of microRNA-21 in enriched urine samples. Graphical abstract.


Asunto(s)
Grafito/química , MicroARNs/orina , Resonancia por Plasmón de Superficie/métodos , Sondas de ADN/química , Oro/química , Humanos , Límite de Detección , MicroARNs/análisis , Polietilenos/química , Compuestos de Amonio Cuaternario/química
19.
Anal Bioanal Chem ; 412(21): 5089-5096, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32009193

RESUMEN

This work reports the successful non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with bathocuproinedisulfonic acid (BCS) and the analytical application of the resulting dispersion (MWCNTs-BCS) to develop an electrochemical sensor for Cu(II) quantification. The sensor was obtained by casting glassy carbon electrodes (GCEs) with MWCNTs-BCS. The sensing mechanism was based on the open circuit preconcentration of Cu(II) at the electrode surface by complexation of Cu(II) through the phenanthroline ring nitrogen of the BCS that supports the MWCNTs, the reduction of the preconcentrated Cu(II), and final differential pulse voltammetry-anodic stripping in 0.020 M acetate buffer, pH 5.00. The sensitivity of the sensor was (2.73 ± 0.08) µA µM-1, with a linear range between 5.0 × 10-7 M and 6.0 × 10-6 M, a detection limit of 0.15 µM (9.5 µg L-1), and reproducibility of 6.2% using the same dispersion and 7.1% using three different MWCNTs-BCS dispersions. The quantification of Cu(II) was highly selective even in the presence of As3+, Cr3+, Cd2+, Ni2+, Pb2+, Co2+, Zn2+, Fe2+, Hg2+, Rh, Ir, and Ru. The proposed sensor was successfully used for quantifying Cu(II) in tap water. Graphical abstract.

20.
Biosens Bioelectron ; 148: 111764, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31707325

RESUMEN

We are reporting an original supramolecular architecture based on a rationally designed new nanohybrid with enhanced peroxidase-like activity and site-specific biorecognition properties using avidin-functionalized multi-walled carbon nanotubes (MWCNTs-Av) and Ru nanoparticles (RuNPs). The nanohybrid-electrochemical interface was obtained by drop-coating of MWCNTs-Av dispersion at glassy carbon electrodes (GCE) followed by solvent evaporation and further electrodeposition of RuNPs (50 ppm RuCl2 for 15 s at -0.600 V). The simultaneous presence of MWCNTs and RuNPs produces a synergic effect on the non-enzymatic catatalytic reduction of H2O2 and allows the quantification of H2O2 in a wide linear range (from 5.0 × 10-7 M to 1.75 × 10-3 M) with a low limit of detection (65 nM). The avidin residues present in MWCNTs-Av/RuNPs hybrid nanomaterial allowed the anchoring by bioaffinity of biotinylated glucose oxidase (biot-GOx) as proof-of-concept of the analytical application of MWCNTs-Av platform for biosensors development. The resulting nanoarchitecture behaves as a bienzymatic-like glucose biosensor with a competitive analytical performance: linear range between 2.0 × 10-5 M and 1.23 × 10-3 M, sensitivity of (0.343 ±â€¯0.002) µA mM-1 or (2.60 ±â€¯0.02) µA mM-1 cm-2, detection limit of 3.3 µM, and reproducibility of 5.2% obtained with five different GCE/MWCNTs-Av/RuNPs/biot-GOx bioplatforms prepared the same day using the same MWCNTs-Av dispersion, and 9.1% obtained with nine biosensors prepared in different days with nine different MWCNTs-Av dispersions. The average concentrations of glucose in Gatorade®, Red bull® and Pepsi® with the biosensor demonstrated excellent agreement with those reported in the commercial beverages.


Asunto(s)
Avidina/química , Técnicas Biosensibles/métodos , Nanopartículas/química , Nanotubos de Carbono/química , Rutenio/química , Aspergillus niger/enzimología , Bebidas/análisis , Materiales Biomiméticos/química , Biotinilación , Catálisis , Técnicas Electroquímicas/métodos , Glucosa/análisis , Glucosa Oxidasa/química , Peróxido de Hidrógeno/análisis , Límite de Detección , Nanopartículas/ultraestructura , Nanotubos de Carbono/ultraestructura , Peroxidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...